Matematika

Pertanyaan

persamaan garis lurus yg melalui titik (2,3) dan (-3,5) adalah

2 Jawaban

  • Bab        : Persamaan Garis
    Mapel    : Matematika
    Kelas     : VIII

    Rumus :
    (y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)

    Melalui titik (2, 3) dan (-3, 5)
    x₁ = 2
    y₁ = 3
    x₂ = -3
    y₂ = 5

    Persamaan Garis
    (y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)
    (y - 3) / (5 - 3) = (x - 2) / (-3 - 2)
    (y - 3) / 2 = (x - 2) / (-5)
    -5(y - 3) = 2(x - 2)
    -5y + 15 = 2x - 4
    -5y = 2x - 4 - 15
    -5y = 2x - 19
    2x + 5y - 19 = 0
  • [tex] y_{1} \ = \ 5[/tex]
    [tex] x_{1} \ = \ -3[/tex]
    [tex] y_{2} \ = \ 3 [/tex]
    [tex] x_{2} \ = \ 2[/tex]

     [tex]y \ - \ y_{1} \ = ( \frac{ y_{1 \ - \ y_{2} } }{ x_{1} \ - \ x_{2} } )(x \ - \ x_{1} ) \\\\ y \ - \ 5 \ = ( \frac{5 \ - \ 3}{-3 \ - \ 2} )(x \ - \ (-3)) \\\\ y \ - \ 5 = \ - \frac{2}{5} (x \ + \ 3) \\\\ y \ - \ 5 \ = - \frac{2}{5} x \ - \ \frac{6}{5} \\\\ y \ = \ - \frac{2}{5} x \ - \ \frac{6}{5} \ + \ 5 \\\\ y \ = \ - \frac{2}{5} x \ + \ \frac{19}{5} [/tex] \ => \ (Dalam \ bentuk \ y \ = \ ax \ + \ c)[tex]2y \ = -2x + \ 19 \\\\ 2x \ + \ 2y \ - 19 \ = \ 0 \ =\textgreater \ \ (dalam \ bentuk \ ax \ + \ by \ + \ c \ = \ 0) \\\\ [/tex]

Pertanyaan Lainnya